
EventMachine
Nathan Witmer

boulder.rb · August 2011

Wednesday, August 17, 11

?

Wednesday, August 17, 11

What is it?

node.js

Wednesday, August 17, 11

Compare to: node.js.

Not as cool

Wednesday, August 17, 11

It’s not as cool

Ruby!

Wednesday, August 17, 11

But it’s ruby!

Older

Wednesday, August 17, 11

Since 2008! And the idea’s been around for a lot longer.

Single-threaded

Wednesday, August 17, 11

And, to be more specific, it’s a single-threaded

Asynchronous

Wednesday, August 17, 11

asynchronous (doesn’t block)

Event-driven

Wednesday, August 17, 11

event-driven...

IO Library

Wednesday, August 17, 11

library. and it’s best for any sort of IO.

(I’ll explain)

Wednesday, August 17, 11

I’ll explain all that.

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

• Sockets

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

• Sockets

• Threads

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

• Sockets

• Threads

• Non-blocking IO

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

• Sockets

• Threads

• Non-blocking IO

• EventMachine

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

• Sockets

• Threads

• Non-blocking IO

• EventMachine

• No more lists

Wednesday, August 17, 11

I’m going to talk about a couple things. A little about sockets, a little about threads, a bit
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more
bulleted lists in this presentation.

Echo!

Wednesday, August 17, 11

Diving right into the network code. Let’s start with a simple network server.

require "socket"
server = TCPServer.open "127.0.0.1", 12345

client = server.accept

Wednesday, August 17, 11

We’ll start with sockets. A basic echo server.
First, open up a socket, then listen for a connection.
Then, repeat anything back.

require "socket"
server = TCPServer.open "127.0.0.1", 12345

client = server.accept

begin
 while data = client.readline
 client.puts data
 end
rescue EOFError
ensure
 client.close
end

Wednesday, August 17, 11

We’ll start with sockets. A basic echo server.
First, open up a socket, then listen for a connection.
Then, repeat anything back.

require "socket"
server = TCPServer.open "127.0.0.1", 12345

while client = server.accept
 begin
 while data = client.readline
 client.puts data
 end
 rescue EOFError
 ensure
 client.close
 end
end

Wednesday, August 17, 11

Ok, let’s wrap that in a loop, so it can handle more than one client.
Ok, that’s... well, that’s not gonna work either. Clients will just stack up.

require "socket"
server = TCPServer.open "127.0.0.1", 12345

loop do
 Thread.new(server.accept) do |client|
 begin
 while data = client.readline
 client.puts data
 end
 rescue EOFError
 ensure
 client.close
 end
 end
end

Wednesday, August 17, 11

So, let’s wrap each client in its own thread. Cool, that’s going to work great, right? Right!
Well, what’s the problem with this?

Threads Suck*

Wednesday, August 17, 11

The problem is, threads suck!

Threads Suck*
*For Some Values of Suck

Wednesday, August 17, 11

Ok, some of the time. They can be complicated to program.

Threads Suck*
*Green threads, anyway

Wednesday, August 17, 11

At least, green threads. What’s wrong with green threads?

Threads Suck*
*Not for JRuby

Wednesday, August 17, 11

And of course not for JRuby, because there, threads are native threads.

Threads Suck*
*For the sake of argument

Wednesday, August 17, 11

Alright, at least for the sake of argument. Too hard to use, or something?

Scheduling

Wednesday, August 17, 11

But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even
if they’re just sitting around and waiting.

Thread 1

Scheduling

Wednesday, August 17, 11

But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even
if they’re just sitting around and waiting.

Thread 1

Scheduling

Wednesday, August 17, 11

But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even
if they’re just sitting around and waiting.

Thread 1
Thread 2
Thread 3

Thread 1

Scheduling

Wednesday, August 17, 11

But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even
if they’re just sitting around and waiting.

Thread 1
Thread 2
Thread 3

Thread 1

Scheduling

Wednesday, August 17, 11

But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even
if they’re just sitting around and waiting.

Why bother?

Wednesday, August 17, 11

Why bother with all of this thrashing around?

Waiting

Wednesday, August 17, 11

Everyone ends up just standing around waiting all the time. Like the DMV.
Ruby’s not going to eat CPU doing that, it’ll just bounce around between all the threads, but
it’s a waste of energy, because everyone’s waiting for IO. This happens a lot.

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Request

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Request Response

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Request Response

db queries

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Request Response

db queries memcache

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Request Response

db queries memcache

waiting!

Wednesday, August 17, 11

Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s
going on? There’s some db queries, a memcache request... and all that time, the server’s
doing nothing but waiting around.

Ding! Fries are done!

Wednesday, August 17, 11

Wouldn’t it be nice if the software told *me* when it was ready?

Kernel.select

Wednesday, August 17, 11

Select. It’s a low-level kernel API call.

Kernel.select read_array

Wednesday, August 17, 11

Takes a few arguments, only the first is required. An array of IO objects or file descriptors.

Kernel.select read, write

Kernel.select read_array

Wednesday, August 17, 11

Takes a few arguments, only the first is required. An array of IO objects or file descriptors.

Kernel.select read, write

Kernel.select read, write, error

Kernel.select read_array

Wednesday, August 17, 11

Takes a few arguments, only the first is required. An array of IO objects or file descriptors.

Kernel.select read, write

Kernel.select read, write, error

Kernel.select read, write, error, timeout

Kernel.select read_array

Wednesday, August 17, 11

Takes a few arguments, only the first is required. An array of IO objects or file descriptors.

readable, writeable = Kernel.select(...)

Wednesday, August 17, 11

Select returns a list of each object that is readable, writeable, or has an error.
If no timeout is given, it will wait forever.

server = TCPServer.open ...

loop do
 read, write = IO.select([server])
 # ...
end

Wednesday, August 17, 11

So let’s use this. Maybe we can service a bunch of clients all at once. We’ll start with a loop,
and then call select on our server.

server = TCPServer.open ...
clients = []

loop do
 read, write = IO.select([server] + clients)
 read.each do |io|
 if io == server
 clients << server.accept
 else
 io.write io.read
 end
 end
end

Wednesday, August 17, 11

Alright, so the server will tell us when it’s ready, i.e. someone just connected. First, let’s keep
track of the connected clients. Then, if a client’s got data, we’ll write it right back.

Hooray!

Wednesday, August 17, 11

Well, that’s that! It works!

But...

Wednesday, August 17, 11

But... that’s a lot of work to do just a little bit of code.

API calls?

Wednesday, August 17, 11

What if we need to talk to a bunch of services, like HTTP servers?

Databases?

Wednesday, August 17, 11

What about databases?

Timers?

Wednesday, August 17, 11

And what happens when we need to do things at intervals?

sleep 10

Wednesday, August 17, 11

readable, writeable = IO.select clients
readable.each do |io|
 data = io.read

 sleep 10

 io.write data
end

Uh oh!

Wednesday, August 17, 11

Kernel.select can’t do a thing about this! Shoot. Now what are the options? Go back into
threads again? Bleh.

Other problems?

Wednesday, August 17, 11

What other problems are there with this approach?

c10k

Wednesday, August 17, 11

The c10k problem: how do we write a program that can handle 10,000 simultaneous
connections?

select() limit: 1024

Wednesday, August 17, 11

The select call can only handle up to 1024 descriptors, so that’s only 1024 connections.

Threads Suck*
*still

Wednesday, August 17, 11

Threads, again. We could throw a ton of threads at the problem. Ruby’s not going to do very
well with thousands of threads.

epoll / kqueue

Wednesday, August 17, 11

epoll on linux, and kqueue on bsd (including mac): better than select, can handle huge
numbers. Hooray!

Too low-level

Wednesday, August 17, 11

But the real problem is, this all ends up being too low-level. It took a lot of work to make a
simple network server. Now imagine setting up something more complex. Parsing HTTP
requests, making api calls, talking to a database, etc.

Patterns

Wednesday, August 17, 11

Let’s step back, generalize a bit, and talk about what we’re doing in terms of patterns.

loop do
 wait_for_data
 do_something_with_it
end

Wednesday, August 17, 11

This is the general pattern that we were just using. In a loop, wait for data, then do
something with it. Call it an event loop?

data = client.get_data

do_stuff_with(data)

Wednesday, August 17, 11

The core of what’s going on is: we ask the client for data, then we do something with it.
We’re the ones controlling the interaction. What if, instead, the client told *us* when data was
ready?

client.receive do |data|
 do_stuff_with(data)
end

Wednesday, August 17, 11

Now, the client is telling us when the data is ready. We give the client a block of code to run
at its leisure, whenever the data’s ready.

Inversion of Control

Wednesday, August 17, 11

This pattern is called “inversion of control”.

Holla Back!

Wednesday, August 17, 11

You’ve probably seen this before. Callbacks!

jQuery?

Wednesday, August 17, 11

Who here’s done ajax with jQuery?

$.ajax({
 type: 'GET',
 url: '/stuff',
 success: function(data) {
 // do stuff with data
 }
});

Wednesday, August 17, 11

A jQuery ajax call. Makes the call, asynchronously, and when the data’s ready, *it* tells *us*
that it’s ready, and calls our code in the “success” callback.

clients = []
loop do
 readable, _ = IO.select([server] + clients)
 readable.each do |io|
 if io == server
 clients << server.accept
 else
 io.write io.read
 end
 end
end

Wednesday, August 17, 11

Let’s generalize what we were doing, but this time using callbacks. Here’s where we started.
In a loop, do two things: accept new clients, and echo things back to existing clients.

server.client_connected do |client|
 client.receive_data do |data|
 client.send_data data
 end
end

loop do
 wait_for_server_or_clients
notify_server_or_clients

end

Wednesday, August 17, 11

Now, reimagine this with callbacks. Two callbacks we care about: new clients, and receiving
data from clients.

Reactor Pattern

Wednesday, August 17, 11

And there’s a name for this pattern: the “reactor pattern”. Event handling loop, which notifies
your code when things happen.

EventMachine

Wednesday, August 17, 11

Alright, let’s talk about EventMachine. As you probably guessed, EventMachine uses the
reactor pattern and an event loop to do its thing.

Event Loop

Wednesday, August 17, 11

EventMachine is based around a simple event loop.

require "eventmachine"

EventMachine.run do
 # ...
end

Wednesday, August 17, 11

And that’s the event loop. EventMachine.run.

require "eventmachine"

EM.run do
 # ...
end

Wednesday, August 17, 11

For shorthand, EventMachine is aliased as EM.

EM.run do
 EM.start_server '127.0.0.1', 12345
end

Wednesday, August 17, 11

Let’s start a server up. Listening on the same port.

module Echo
 # callbacks
end

EM.run do
 EM.start_server '127.0.0.1', 12345, Echo
end

Wednesday, August 17, 11

Of course, there’s nothing there to handle clients. What I left out was the final parameter to
start_server: a module (or class) that implements the necessary callbacks.

module Echo
 def receive_data(data)
 send_data data
 end
end

EM.run do
 EM.start_server '127.0.0.1', 12345, Echo
end

Wednesday, August 17, 11

And let’s fill out the Echo module. Using the “receive_data” callback, and calling “send_data”
within it.

module Echo
 def post_init
 puts "connection initialized"
 end

 def connection_completed
 puts "connection established"
 end

 def receive_data(data)
 puts "received #{data}"
 end

 def unbind
 puts "connection closed"
 end
end

Wednesday, August 17, 11

Here’s the available callbacks on an EM connection.

EventMachine.run do
 # get me out of here!
end

Wednesday, August 17, 11

All this time we’ve working inside the event loop. What if we need to get out?

EventMachine.run do

 # ...

 EM.stop
end

Wednesday, August 17, 11

You can stop the loop at any time by calling EM.stop

EM.run do
 trap("INT") do
 # clean up...
 EM.stop
 end
end

Wednesday, August 17, 11

Can even handle ctrl+c gracefully.

EM.kqueue

EM.epoll

Wednesday, August 17, 11

And one more thing. EM uses select by default, but supports epoll and kqueue as well. Just
call these, and it’ll enable it if it’s available.

running as superuser on linux
EM.epoll

EM.set_descriptor_table_size(60000)

now, drop our privileges
EM.set_effective_user "nobody"

Wednesday, August 17, 11

Some other issues include kernel limitations of how many descriptors you’re allowed to use.
Will probably need superuser, but you can set the descriptor size and then de-escalate
privileges once things are set up.

Protocols

Wednesday, August 17, 11

EventMachine can handle a whole bunch of protocols.

module Echo
 def receive_data(data)
 send_data data
 end
end

module EchoLines
 def receive_data(data)
 send_data data
 end
end

Wednesday, August 17, 11

So let’s talk about our echo server again. What data are we receiving here? Who knows! It’s
whatever gets sent, period. TCP is a *stream* of data. But let’s say we want to echo lines, not
characters, as we receive them.

TCP is a stream!

Wednesday, August 17, 11

module EchoLines
 def post_init
 @buffer = ""
 end

 def receive_data(data)
 @buffer << data
 *lines, @buffer = @buffer.split "\n", -1
 lines.each do |line|
 # handle line
 end
 end
end

Wednesday, August 17, 11

And here’s how we can handle that. Buffer things until we get a line, then process it.

module EchoLines
 include EM::Protocol::LineText2

 def receive_line(line)
 # ...
 end
end

Wednesday, August 17, 11

Or, let’s let EventMachine handle this. There’s a whole bunch of protocols implemented, and
one of these handles the line-based buffering. It’s LineText2 because there’s already a
LineAndText protocol, and this is an improved version of it.

Built-in!

Wednesday, August 17, 11

There’s a whole bunch that are built in!

Basic HTTP client

delimiter-based protocols

Memcache

Marshaled Ruby Objects

PostgreSQL

SASL Auth

SMTP Client

Headers & Content

SMTP Server

Socks4

Stomp

Wednesday, August 17, 11

Some of the other protocols implemented. Basic http client, SMTP client (and server!),
marshaled ruby objects, delimiter-based stuff (lines),stomp, postgres, memcached. Neat.

Gems!

Wednesday, August 17, 11

And a whole lot more available as gems

AMQPMySQLXMPP

DNS

ICMP

Redis

MongoDB

CouchDB

Beanstalk

SNMP

Websockets

Cassandra

Thrift Oscar (AIM)

0MQ

Wednesday, August 17, 11

What else is available? Not an exhaustive list! I’ll show you one of these in just a moment.

gem "em-http-request"

require "em-http-request"

EM.run do
 http = EM::HttpRequest.new(ARGV.first).get

 http.callback do
 puts "success: #{http.response_header.status}"
 puts http.response
 EM.stop
 end

 http.errback do
 puts "error: " + http.error
 EM.stop
 end
end

Wednesday, August 17, 11

So let’s try one of these. An http client. This is not the built-in one, as it’s somewhat limited.
This one’s better. And look, there’s even error handling!

HTTP APIs

Wednesday, August 17, 11

And there’s a ton of HTTP api clients for eventmachine.

Campfire

AWS-S3

TwitterSolr

Flickr

PubSubHubbub

Wednesday, August 17, 11

And of course there are more than this. But this does include streaming APIs, like campfire
and twitter, so it’s well-suited for doing campfire bots, etc.

module Status
 # more shorthand!
 include EM::P::LineText2

 def receive_line(url)
 http = EM::HttpRequest.new(url).head

 http.callback do
 send_data "#{url} is up!\n"
 end

 http.errback do
 send_data "#{url} unavailable\n"
 end
 end

end

EM.run do
 EM.start_server 'localhost', 12345, Status
end

Wednesday, August 17, 11

To tie some of that together, here’s a slightly more complex example.

Timers

Wednesday, August 17, 11

EM.run do
 sleep 10
end

Wednesday, August 17, 11

NO! bad! everything stops!

EM.run do
 sleep 10
end

Wednesday, August 17, 11

NO! bad! everything stops!

First Rule of
EventMachine

Wednesday, August 17, 11

The first rule of event machine is...

Do Not Block The
Event Loop!

Wednesday, August 17, 11

If you block the event loop, *nothing else can happen*.

EM.run do
 EM.add_timer(10) { "slept!" }
end

Wednesday, August 17, 11

calling “add_timer” sets a timer in the internal eventmachine loop, and after it’s expired the
callback is run.

EM.run do
 EM.add_periodic_timer(5) do
 "every 5 seconds!"
 end
end

Wednesday, August 17, 11

You can even add periodic timers.

EM.run do
 EM.add_periodic_timer(5) do
 "every 5 seconds!"
 end

 # other stuff, yay!
end

Wednesday, August 17, 11

But the best part is, the timers are asynchronous. Everything else can keep running, and you
can do other stuff at the same time.

Single-threaded

Wednesday, August 17, 11

Notice I haven’t said anything about threads in EventMachine. That’s because by default, it
doesn’t do anything with threads at all. One thread, one CPU, lots of IO.

Heavy Lifting

Wednesday, August 17, 11

But what if I want to do heavy lifting? Lots of CPU usage?

EM.run do
 fibonacci(1_000_000)
end

Wednesday, August 17, 11

Like doing a lot of calculations. Bad idea! It blocks the event loop!

EM.run do
 fibonacci(1_000_000)
end

Wednesday, August 17, 11

Like doing a lot of calculations. Bad idea! It blocks the event loop!

First Rule of
EventMachine

Wednesday, August 17, 11

The first rule of event machine is...

Do Not Block The
Event Loop!

Wednesday, August 17, 11

If you block the event loop, *nothing else can happen*.

Defer

Wednesday, August 17, 11

So: let’s defer the CPU to elsewhere.

EM.run do
 EM.defer do
 fibonacci(1_000_000)
 end
end

Wednesday, August 17, 11

Thread pool

Wednesday, August 17, 11

For EM.defer, EM keeps an internal thread pool around. Only 20 threads by default, to keep
performance good. Can’t spend too much time mucking about with threads!

Go Easy

Wednesday, August 17, 11

In short, go easy on eventmachine. Don’t do lots of CPU, or make sure you optimize things as
well as you can.

Testing

Wednesday, August 17, 11

Can’t not mention testing.

em-spec

Wednesday, August 17, 11

em-spec, for testing asynchronous code.

require "em/spec"

EM.describe EventMachine do

 should "have timers" do
 start = Time.now
 EM.add_timer(0.5){
 (Time.now-start).should.be.close 0.5, 0.1
 done # tell em-spec we're done
 }
 end

end

Wednesday, August 17, 11

An example (from the README) of testing a piece of EM code.

What’s it good for?

Wednesday, August 17, 11

Glue!

Wednesday, August 17, 11

API clients and servers

Wednesday, August 17, 11

Networking

Wednesday, August 17, 11

Streaming

Wednesday, August 17, 11

In the wild

Wednesday, August 17, 11

Eventmachine in the wild, where you might see it.

Thin

Wednesday, August 17, 11

the Thin rack server

Rainbows

Wednesday, August 17, 11

Rainbows, also a rack server

Cramp

Wednesday, August 17, 11

Cramp, which is an async web app framework. Does websockets and things really well.

Goliath

Wednesday, August 17, 11

Goliath. Async api server.

Alternatives

Wednesday, August 17, 11

node.js

Wednesday, August 17, 11

Kidding, sorta. There are a lot of similarities.

cool.io

Wednesday, August 17, 11

But here’s another serious alternative. Using libev, rather than a hand-rolled event loop.
Actor pattern, rather than reactor, and replaces the underlying ruby IO objects rather than
adding its own. Worth checking out.

Questions?

Wednesday, August 17, 11

Links
EventMachine – https://github.com/eventmachine/eventmachine

EM Wiki – https://github.com/eventmachine/eventmachine/wiki

em-http-request – https://github.com/igrigorik/em-http-request

em-spec – https://github.com/tmm1/em-spec

c10k problem – http://www.kegel.com/c10k.html

Cramp – http://cramp.in/

Goliath – http://postrank-labs.github.com/goliath/

cool.io – http://coolio.github.com/

Wednesday, August 17, 11

https://github.com/eventmachine/eventmachine
https://github.com/eventmachine/eventmachine
https://github.com/eventmachine/eventmachine/wiki
https://github.com/eventmachine/eventmachine/wiki
https://github.com/igrigorik/em-http-request
https://github.com/igrigorik/em-http-request
https://github.com/tmm1/em-spec
https://github.com/tmm1/em-spec
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html
http://cramp.in
http://cramp.in
http://postrank-labs.github.com/goliath/
http://postrank-labs.github.com/goliath/
http://coolio.github.com
http://coolio.github.com

Thanks!

Wednesday, August 17, 11

Wednesday, August 17, 11

