
EventMachine
Nathan Witmer

boulder.rb · August 2011

Wednesday, August 17, 11



?

Wednesday, August 17, 11

What is it?



node.js
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Compare to: node.js.



Not as cool
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It’s not as cool



Ruby!
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But it’s ruby!



Older
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Since 2008! And the idea’s been around for a lot longer.



Single-threaded
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And, to be more specific, it’s a single-threaded



Asynchronous
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asynchronous (doesn’t block)



Event-driven
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event-driven...



IO Library
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library. and it’s best for any sort of IO.



(I’ll explain)
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I’ll explain all that.
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I’m going to talk about a couple things. A little about sockets, a little about threads, a bit 
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more 
bulleted lists in this presentation.
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I’m going to talk about a couple things. A little about sockets, a little about threads, a bit 
about non-blocking IO, and then I’ll show you EventMachine. Also, there are no more 
bulleted lists in this presentation.



Echo!

Wednesday, August 17, 11

Diving right into the network code. Let’s start with a simple network server.



require "socket"
server = TCPServer.open "127.0.0.1", 12345

client = server.accept
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We’ll start with sockets. A basic echo server.
First, open up a socket, then listen for a connection.
Then, repeat anything back.



require "socket"
server = TCPServer.open "127.0.0.1", 12345

client = server.accept

begin
  while data = client.readline
    client.puts data
  end
rescue EOFError
ensure
  client.close
end
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We’ll start with sockets. A basic echo server.
First, open up a socket, then listen for a connection.
Then, repeat anything back.



require "socket"
server = TCPServer.open "127.0.0.1", 12345

while client = server.accept
  begin
    while data = client.readline
      client.puts data
    end
  rescue EOFError
  ensure
    client.close
  end
end
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Ok, let’s wrap that in a loop, so it can handle more than one client.
Ok, that’s... well, that’s not gonna work either. Clients will just stack up.



require "socket"
server = TCPServer.open "127.0.0.1", 12345

loop do
  Thread.new(server.accept) do |client|
    begin
      while data = client.readline
        client.puts data
      end
    rescue EOFError
    ensure
      client.close
    end
  end
end
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So, let’s wrap each client in its own thread. Cool, that’s going to work great, right? Right! 
Well, what’s the problem with this?



Threads Suck*
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The problem is, threads suck!



Threads Suck*
*For Some Values of Suck
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Ok, some of the time. They can be complicated to program.



Threads Suck*
*Green threads, anyway
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At least, green threads. What’s wrong with green threads?



Threads Suck*
*Not for JRuby
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And of course not for JRuby, because there, threads are native threads.



Threads Suck*
*For the sake of argument
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Alright, at least for the sake of argument. Too hard to use, or something?



Scheduling
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But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even 
if they’re just sitting around and waiting.
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Scheduling
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But the problem with green threads is scheduling. Multiple threads get equal CPU time. Even 
if they’re just sitting around and waiting.



Why bother?
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Why bother with all of this thrashing around?



Waiting
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Everyone ends up just standing around waiting all the time. Like the DMV.
Ruby’s not going to eat CPU doing that, it’ll just bounce around between all the threads, but 
it’s a waste of energy, because everyone’s waiting for IO. This happens a lot.
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Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s 
going on? There’s some db queries, a memcache request... and all that time, the server’s 
doing nothing but waiting around.
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Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s 
going on? There’s some db queries, a memcache request... and all that time, the server’s 
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Request Response

db queries memcache

waiting!
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Even web apps. A request comes in, stuff happens, the response goes out. Easy. But what’s 
going on? There’s some db queries, a memcache request... and all that time, the server’s 
doing nothing but waiting around.



Ding! Fries are done!
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Wouldn’t it be nice if the software told *me* when it was ready?



Kernel.select
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Select. It’s a low-level kernel API call.



Kernel.select read_array
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Takes a few arguments, only the first is required. An array of IO objects or file descriptors.
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Takes a few arguments, only the first is required. An array of IO objects or file descriptors.



Kernel.select read, write

Kernel.select read, write, error

Kernel.select read, write, error, timeout

Kernel.select read_array
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Takes a few arguments, only the first is required. An array of IO objects or file descriptors.



readable, writeable = Kernel.select(...)
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Select returns a list of each object that is readable, writeable, or has an error.
If no timeout is given, it will wait forever.



server = TCPServer.open ...

loop do
  read, write = IO.select([server])
  # ...
end

Wednesday, August 17, 11

So let’s use this. Maybe we can service a bunch of clients all at once. We’ll start with a loop, 
and then call select on our server.



server = TCPServer.open ...
clients = []

loop do
  read, write = IO.select([server] + clients)
  read.each do |io|
    if io == server
      clients << server.accept
    else
      io.write io.read
    end
  end
end
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Alright, so the server will tell us when it’s ready, i.e. someone just connected. First, let’s keep 
track of the connected clients. Then, if a client’s got data, we’ll write it right back.



Hooray!
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Well, that’s that! It works!



But...
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But... that’s a lot of work to do just a little bit of code.



API calls?
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What if we need to talk to a bunch of services, like HTTP servers?



Databases?
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What about databases?



Timers?
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And what happens when we need to do things at intervals?



sleep 10
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readable, writeable = IO.select clients
readable.each do |io|
  data = io.read

  sleep 10

  io.write data
end

Uh oh!
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Kernel.select can’t do a thing about this! Shoot. Now what are the options? Go back into 
threads again? Bleh.



Other problems?
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What other problems are there with this approach?



c10k
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The c10k problem: how do we write a program that can handle 10,000 simultaneous 
connections?



select() limit: 1024
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The select call can only handle up to 1024 descriptors, so that’s only 1024 connections.



Threads Suck*
*still
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Threads, again. We could throw a ton of threads at the problem. Ruby’s not going to do very 
well with thousands of threads.



epoll / kqueue
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epoll on linux, and kqueue on bsd (including mac): better than select, can handle huge 
numbers. Hooray!



Too low-level
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But the real problem is, this all ends up being too low-level. It took a lot of work to make a 
simple network server. Now imagine setting up something more complex. Parsing HTTP 
requests, making api calls, talking to a database, etc.



Patterns
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Let’s step back, generalize a bit, and talk about what we’re doing in terms of patterns.



loop do
  wait_for_data
  do_something_with_it
end
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This is the general pattern that we were just using. In a loop, wait for data, then do 
something with it. Call it an event loop?



data = client.get_data

do_stuff_with(data)
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The core of what’s going on is: we ask the client for data, then we do something with it. 
We’re the ones controlling the interaction. What if, instead, the client told *us* when data was 
ready?



client.receive do |data|
  do_stuff_with(data)
end
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Now, the client is telling us when the data is ready. We give the client a block of code to run 
at its leisure, whenever the data’s ready.



Inversion of Control
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This pattern is called “inversion of control”.



Holla Back!
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You’ve probably seen this before. Callbacks!



jQuery?
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Who here’s done ajax with jQuery?



$.ajax({
  type: 'GET',
  url: '/stuff',
  success: function(data) {
    // do stuff with data
  }
});
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A jQuery ajax call. Makes the call, asynchronously, and when the data’s ready, *it* tells *us* 
that it’s ready, and calls our code in the “success” callback.



clients = []
loop do
  readable, _ = IO.select([server] + clients)
  readable.each do |io|
    if io == server
      clients << server.accept
    else
      io.write io.read
    end
  end
end
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Let’s generalize what we were doing, but this time using callbacks. Here’s where we started. 
In a loop, do two things: accept new clients, and echo things back to existing clients.



server.client_connected do |client|
  client.receive_data do |data|
    client.send_data data
  end
end

loop do
  wait_for_server_or_clients
notify_server_or_clients

end
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Now, reimagine this with callbacks. Two callbacks we care about: new clients, and receiving 
data from clients.



Reactor Pattern
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And there’s a name for this pattern: the “reactor pattern”. Event handling loop, which notifies 
your code when things happen.



EventMachine
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Alright, let’s talk about EventMachine. As you probably guessed, EventMachine uses the 
reactor pattern and an event loop to do its thing.



Event Loop
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EventMachine is based around a simple event loop.



require "eventmachine"

EventMachine.run do
  # ...
end
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And that’s the event loop. EventMachine.run.



require "eventmachine"

EM.run do
  # ...
end
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For shorthand, EventMachine is aliased as EM.



EM.run do
  EM.start_server '127.0.0.1', 12345
end
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Let’s start a server up. Listening on the same port.



module Echo
  # callbacks
end

EM.run do
  EM.start_server '127.0.0.1', 12345, Echo
end
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Of course, there’s nothing there to handle clients. What I left out was the final parameter to 
start_server: a module (or class) that implements the necessary callbacks.



module Echo
  def receive_data(data)
    send_data data
  end
end

EM.run do
  EM.start_server '127.0.0.1', 12345, Echo
end

Wednesday, August 17, 11

And let’s fill out the Echo module. Using the “receive_data” callback, and calling “send_data” 
within it.



module Echo
  def post_init
    puts "connection initialized"
  end

  def connection_completed
    puts "connection established"
  end

  def receive_data(data)
    puts "received #{data}"
  end

  def unbind
    puts "connection closed"
  end
end
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Here’s the available callbacks on an EM connection.



EventMachine.run do
  # get me out of here!
end
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All this time we’ve working inside the event loop. What if we need to get out?



EventMachine.run do

  # ...

  EM.stop
end
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You can stop the loop at any time by calling EM.stop



EM.run do
  trap("INT") do
    # clean up...
    EM.stop
  end
end
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Can even handle ctrl+c gracefully.



EM.kqueue

EM.epoll
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And one more thing. EM uses select by default, but supports epoll and kqueue as well. Just 
call these, and it’ll enable it if it’s available.



# running as superuser on linux
EM.epoll

EM.set_descriptor_table_size(60000)

# now, drop our privileges
EM.set_effective_user "nobody"
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Some other issues include kernel limitations of how many descriptors you’re allowed to use. 
Will probably need superuser, but you can set the descriptor size and then de-escalate 
privileges once things are set up.



Protocols
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EventMachine can handle a whole bunch of protocols.



module Echo
  def receive_data(data)
    send_data data
  end
end

module EchoLines
  def receive_data(data)
    send_data data
  end
end
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So let’s talk about our echo server again. What data are we receiving here? Who knows! It’s 
whatever gets sent, period. TCP is a *stream* of data.  But let’s say we want to echo lines, not 
characters, as we receive them.



TCP is a stream!
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module EchoLines
  def post_init
    @buffer = ""
  end

  def receive_data(data)
    @buffer << data
    *lines, @buffer = @buffer.split "\n", -1
    lines.each do |line|
      # handle line
    end
  end
end
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And here’s how we can handle that. Buffer things until we get a line, then process it.



module EchoLines
  include EM::Protocol::LineText2

  def receive_line(line)
    # ...
  end
end
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Or, let’s let EventMachine handle this. There’s a whole bunch of protocols implemented, and 
one of these handles the line-based buffering. It’s LineText2 because there’s already a 
LineAndText protocol, and this is an improved version of it.



Built-in!
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There’s a whole bunch that are built in!



Basic HTTP client

delimiter-based protocols

Memcache

Marshaled Ruby Objects

PostgreSQL

SASL Auth

SMTP Client

Headers & Content

SMTP Server

Socks4

Stomp
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Some of the other protocols implemented. Basic http client, SMTP client (and server!), 
marshaled ruby objects, delimiter-based stuff (lines),stomp, postgres, memcached. Neat.



Gems!
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And a whole lot more available as gems



AMQPMySQLXMPP

DNS

ICMP

Redis

MongoDB

CouchDB

Beanstalk

SNMP

Websockets

Cassandra

Thrift Oscar (AIM)

0MQ
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What else is available? Not an exhaustive list! I’ll show you one of these in just a moment.



gem "em-http-request"

require "em-http-request"

EM.run do
  http = EM::HttpRequest.new(ARGV.first).get

  http.callback do
    puts "success: #{http.response_header.status}"
    puts http.response
    EM.stop
  end

  http.errback do
    puts "error: " + http.error
    EM.stop
  end 
end
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So let’s try one of these. An http client. This is not the built-in one, as it’s somewhat limited. 
This one’s better. And look, there’s even error handling!



HTTP APIs
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And there’s a ton of HTTP api clients for eventmachine.



Campfire

AWS-S3

TwitterSolr

Flickr

PubSubHubbub
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And of course there are more than this. But this does include streaming APIs, like campfire 
and twitter, so it’s well-suited for doing campfire bots, etc.



module Status
  # more shorthand!
  include EM::P::LineText2

  def receive_line(url)
    http = EM::HttpRequest.new(url).head

    http.callback do
      send_data "#{url} is up!\n"
    end

    http.errback do
      send_data "#{url} unavailable\n"
    end
  end

end

EM.run do
  EM.start_server 'localhost', 12345, Status
end
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To tie some of that together, here’s a slightly more complex example.



Timers
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EM.run do
  sleep 10
end
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NO! bad! everything stops!



EM.run do
  sleep 10
end
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NO! bad! everything stops!



First Rule of 
EventMachine
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The first rule of event machine is...



Do Not Block The 
Event Loop!
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If you block the event loop, *nothing else can happen*.



EM.run do
  EM.add_timer(10) { "slept!" }
end
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calling “add_timer” sets a timer in the internal eventmachine loop, and after it’s expired the 
callback is run.



EM.run do
  EM.add_periodic_timer(5) do
    "every 5 seconds!"
  end
end
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You can even add periodic timers.



EM.run do
  EM.add_periodic_timer(5) do
    "every 5 seconds!"
  end

  # other stuff, yay!
end
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But the best part is, the timers are asynchronous. Everything else can keep running, and you 
can do other stuff at the same time.



Single-threaded
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Notice I haven’t said anything about threads in EventMachine. That’s because by default, it 
doesn’t do anything with threads at all. One thread, one CPU, lots of IO.



Heavy Lifting
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But what if I want to do heavy lifting? Lots of CPU usage?



EM.run do
  fibonacci(1_000_000)
end
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Like doing a lot of calculations. Bad idea! It blocks the event loop!



EM.run do
  fibonacci(1_000_000)
end
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Like doing a lot of calculations. Bad idea! It blocks the event loop!
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The first rule of event machine is...



Do Not Block The 
Event Loop!
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If you block the event loop, *nothing else can happen*.



Defer
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So: let’s defer the CPU to elsewhere.



EM.run do
  EM.defer do
    fibonacci(1_000_000)
  end
end
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Thread pool
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For EM.defer, EM keeps an internal thread pool around. Only 20 threads by default, to keep 
performance good. Can’t spend too much time mucking about with threads!



Go Easy
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In short, go easy on eventmachine. Don’t do lots of CPU, or make sure you optimize things as 
well as you can.



Testing
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Can’t not mention testing.



em-spec
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em-spec, for testing asynchronous code.



require "em/spec"

EM.describe EventMachine do

  should "have timers" do
    start = Time.now
    EM.add_timer(0.5){
      (Time.now-start).should.be.close 0.5, 0.1
      done # tell em-spec we're done
    }
  end

end
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An example (from the README) of testing a piece of EM code.



What’s it good for?
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Glue!

Wednesday, August 17, 11



API clients and servers
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Networking
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Streaming
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In the wild
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Eventmachine in the wild, where you might see it.



Thin
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the Thin rack server



Rainbows

Wednesday, August 17, 11

Rainbows, also a rack server



Cramp
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Cramp, which is an async web app framework. Does websockets and things really well.



Goliath
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Goliath. Async api server.



Alternatives
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node.js
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Kidding, sorta. There are a lot of similarities.



cool.io
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But here’s another serious alternative. Using libev, rather than a hand-rolled event loop. 
Actor pattern, rather than reactor, and replaces the underlying ruby IO objects rather than 
adding its own. Worth checking out.



Questions?
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Links
EventMachine – https://github.com/eventmachine/eventmachine

EM Wiki – https://github.com/eventmachine/eventmachine/wiki

em-http-request – https://github.com/igrigorik/em-http-request

em-spec – https://github.com/tmm1/em-spec

c10k problem – http://www.kegel.com/c10k.html

Cramp – http://cramp.in/

Goliath – http://postrank-labs.github.com/goliath/

cool.io – http://coolio.github.com/
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